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Control of projective synchronization in chaotic systems
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We show that the scaling factor of projective synchronization in coupled partially linear systems is unpre-
dictable. This gives rise to the difficulty in estimating the state of synchronized dynamics. We therefore
propose a control method to manipulate the scaling factor onto any desired value so that the synchronization
can be managed in a preferred way. A control law is derived based on the mechanism of projective synchro-
nization of three-dimensional systems and an application is illustrated for the Lorenz system.
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Erratic motions governed by chaotic systems tend tovhere the parameters are setde-10, u=60, andp=%.
move in a similar rhyme in terms of the angular phase or theThe matrixA(z) is a 2x2 matrix[,”, _7] containing the
amplitude through a certain coupling relationship. This phewvariablez that is a chaotic component. The state of the mas-
nomenon, referred to as chaos synchronization, was first oher system isi,,= (x,,,Ym), and the state of the slave system
served by Pecora and Carrgll] in 1990. This dynamical s u,=(x,,y.). The third equation in Eqs2) is the coupling
behavior has been widely explored in a variety of systemsunction linking the master system with the slave system.
including physical[2-5], chemical[6-8], and ecological In three-dimensional systems, such as the Lorenz system,
systems[9-11], to name just a few. Practical applications Mainieri and Rehacek12] observed that the amplitudes of
have emerged in secure communicatif®s] in which syn-  two coupled systems tends to a fixed scaling fagisuch

chronization is used for signal processing. that

In coupled chaotic systems, the dynamical statg., am-
plitude) resulting from synchronization is usually unpredict- lim|a-u,—ugd=0. 3)
able (we shall discuss this laterFrom an application point =

of view, it is necessary to control the system in order to offer_., . . _ .
the opportunity to select and manipulate the solution of syn:rh'.S fa(_:tor be_come; a charactgrlstm of projective SV”ChFO_”"
chronization in a defined way. In this Brief Report, we are.Zatlon n partlally linear chaotic systems. To cast a vivid
interested in applying this idea to the so-called projective:gﬂisss'gfnt\?vgtzgsuprezn?_rgreeﬁn’sv‘geﬂzt %Sgir&;?{olznr'grid dy-
synchronization recently reported by Mainieri and Rehace ig. 1(b). we can Eee that the z;/n ular phases of the two
[12]. Projective synchronization is the dynamical behavior in 9- ’ . 9 P

which the responses of two identical systems synchronize u%oupled systems asymptotically approach each other. Before

to a constant scaling factor. This phenomenon was observeS E;tzvn?spi]::eg é?]eéﬁg’ntr;%rat'(l)(gg tr&\?hi??::teu?vsg 0;;22;\’\’0
in the coupled partially linear systems y P 9ir9g. ' P

become identical, the phase synchronization happens. At this
time, the ratio of the amplitudes of the two systems becomes
the scaling factor.

We will show that the scaling factor is unpredictable. For
a selected initial condition, one can hardly anticipate what
value of the scaling factor will be delivered in projective
synchronization. Consequently, the system performance is
unmanageable. To explain this, we study the evolution of the
angular phase and scaling factor in the cylindrical coordi-
nates, from which we have

Un=A(Z) U,
z=f(uy,2), (1)
Us=A(2)- Ug.
The state vectou has a linear form related to its derivative

with respect to time. The matri&(z) is only dependent on
the variablez, which is nonlinearly related to the variables in

u. The subscript oin denotes the master system asithe b= (xx+yy)/r,
slave system. In the coupled systéiy, the master system
governs the variable and the variablez drives the slave = (xy—yX)/r2 ()
system. Two systems share the variabtéroughout all the ’
time in dynamical evolution. 5=
An example of the partially linear chaotic system is the
Lorenz systenj13] Substituting Egs(1) into Egs.(4), we get
K= — . cosé
X TX+ Y, 0#={cosé,sin 0}[8][A]: sin&} =0(z,0), (5)
y=(pn—2)x-y, 2 _
L ~{cost,sing Al <% ©)
z=xy—pz, r ={cost,sinGHAl) ging |-
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where A(2)=[2%* 212] and B=[_? 1]. The components Integrating Eq.(8), we express the scaling factor as
a1 8 10

a; ; may associate with the variabie ¢

Mainieri and Rehacek12] studied the evolution of the a(t)=a(0)eX[(J h(z,6,,,0.)dr
angular phases in projective synchronization. A difference 0
o= 0,— 65 indicates a distance between the master and slave
systems. From Eq5), the time variation of the angular dif- wherea(0) is an initial scaling factor determined by the ini-
ference is given byp=09(z,0,) —9(z,6s), which carries a tial state. The functiom(z, 6,,,0s) in Eqg. (9) also carries a
term of sing. When sing tends to zero, it leads t¢—0, term of sing. It tends to zero as sip—0. Thus the time
which is a necessary condition of phase synchronization. Thiategration in  Eq. (10) reaches a limited value
sufficient condition(stability condition of the phase syn- lim_.. [5h(z,6mm,0)d7=C when phase synchronization
chronization is given by the criterion occurs. The value of the integration variestastc and re-
Ttlog(z,6)196] - 6, d7<0, which is derived from a linear mains unchanged aftée=t., wheretc is a critical time at

approximation ofi when sing=~0 [12]. The necessary con- Which the phase synchronization happens. From(Hg), the
dition, i.e., sine=0, implies that projective synchronization final scaling factor isx() = a= a(0)x €. Given an initial
happens in two possible ways, i.e=0 and¢=, which state[i.e., given q(O? that depends on the initial state of
are the two equilibrium points @f. As with ¢=0, the state Um- andus], the limit C becomes the only part to determine
vectors of the master state and the slave state are synchrig® scaling factor. Unfortunatelf; is unpredictable because
nized in the same direction all the time, as displayed in Figthe variables ih(z, 6y, 65) behave chaotically. In literature
1. As with =, the state vectors of two synchronized sys-112], the authors remarked that a scaling factor depends on
tems evolve in opposite directions, proportionally symmetri-the |n|t|al condltlpns and a vector field, but itis dlffl_cult to
cal to the origin. obtain an an_alyncal solutlo_n for the \_/eptor fleld. It implies
To understand how the scaling factor finally forms, wethat the_predlcnon of a scaling facto_r is mvalld,_ although Fh_e
look into what happens to the ratio af=r/r,, when phase vector field seems a smoothly nonlinear function of the ini-

o . L ; o i i i - c
synchronization occurs. The time variation of this ratio is  tial state(Fig. 5in[12]). Our resulf a(=)=a(0)x e"] de-
livers a similar conclusion that the scaling factor is deter-

mined by the initial conditiongi.e., «(0)] and a nonlinear
)- (7)  function [i.e., €%, whereC=lim, ... [\h(z, 6,65 d7], but
the nonlinear function is hardly predicted because of the cha-
Substituting Eq(6) into Eq. (7), we have otic variables. To this end, we believe that any effort to es-
timate a resulting scaling factor in the initial stage works to
a=ah(z,0,,0s), (8) no avail.
In this paper, we show that the scaling factor of projective
where synchronization can be arbitrarily maneuvered, as is re-
quired, by introducing a feedback control to the master sys-
h(z,6m, 0s) = [ (11— a2)SIN( Oy 1 Os) tem. A desired scaling factor for synchronization is essen-
: tially important since we can manipulate a synchronized
~ (842 829) COK O 0 1IN Oy~ 6). dynamics to any scale by steering the master system. In what
9 follows, we intend to develop a control method to make the

: (10

: s Fm
a=al —— —
rS rm
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projective synchronization manageable. Examining (EQ), scaling factor varies until it hits the target. We introduce the
we have realized that it delivers a useful message: an ireontrol functions ¢, and ¢, to the master system. The
crease of the value of the integrand will lead to an exponeneoupled systems now become

tial amplification of the scaling factor and vice versa. This

message tells us that we can employ a coné(®) to influ- Xm=a11Xm+ 1Y m* &x,

ence the result of synchronization. Thus we introduce a con- .

trol to Eq.(8) and the system becomes Ym=aXm* 8xym+ &y,
a=a[h(z,0y,06s)+5(1)]. (12) 2= (Xm,Ym,2), (15

However, it is still troublesome to operate the control func- Xs=11Xst 81Ys,

tion &(t). First, the control contains only a small percentage ¥o= Xt npy
of total energy of the system with the result that it may be s TATs T Tads
deficient in strength and ability agairts{z, 6, 05) that var-  wherea; ; may contain the variablz Our next attempt is to
ies chaotically. Second, operation of control in the time derive the control functiong, and &, from Egs.(12) and
<tc may spoil the natural evolution process of phase syn{13), which have been verified as being efficient and robust.
chronization. With the notation ofx=r cosé, y=r sing, and 6,,= 0,

To overcome the problems, the strategy we have used iguring phase synchronization, E@.2) can be written into
to take advantage of the fact thagz, 6,,,, 65) becomes zero two differential equations,
aftert=t.. In this time frame, we can exercise control with-

out any problems. By so doing, we can see that the evolution i Xs| _Xs x Xs
of scaling facton(11) is solely controlled bys(t) as dt\x,/ xm8 @ Xm/ '
: (16)
a=ad(t), t=tc, (12 d(ys) Vs . Vs
dt\Ym) Y VT Yml
and att=tc, a(tc)=a is the initial state of Eq(12). The meeam m
control function has a feedback form We investigate the first equation in Eq46) to derive the
control functioné,. The derivation foré, will be similar.
o(t)=0, t<tc, The differentiation of the ratio ofs/x,,, with respect to time
(13 also yields
s(t)=e(a*—a), t=tc, o
dXs) Xs(Xs Xp
wherea* is a desired scaling factor and the parametira dtiXm/  Xm|Xs Xm)' (7
feedback gain. From Eq$12) and(13), the controlled scal- _ . _
ing factor is computed by From the first equation of Eq$16) and(17), we obtain
a* -t )IE_ X_m - X
a(t)y=a*|1+| =—1|exp —ea*t) (149 Xs Xm—s(a Xm/ (18)
o

Substituting the first equation and fourth equation of Egs.

The control mechanism can be easily understood. Fronys) into Eq.(18), and noting that the relatiox,ys=Xsym iS
Eq. (13), the control function generates a negative signal ttheld when phase synchronization persists, we then derive the
decrease the scaling fact@t2) as a>a*, and a positive control function foré,,
signal to increase the scaling factor @s.o*. The magni-
tude of the control signal decreases when the scaling factor E=e(Xs—a™Xp). (19
approaches the target. The contrfd?2 always leads to
lim,_ .. a(t)=a* at an exponential rate, #a* >0 as indi-
.cat.ed in Eq{14). Thus the control is robust and efficient. It £=e(Ys— a*yp). (20)
is important to note that we must set-0 when a* >0
(synchronization ap=0), ande <0 whena* <0 (synchro-  The control should be turned on whert.
nization ate = ). Also note that there exists singularity in ~ We now apply this control method to the Lorenz system
Eq. (14) if the target value is set to zero, at which either the(2) coupled in the form of15). We illustrate the case of the
master system vanishes or the slave system tends to infinitegynchronization atp=0 in Fig. 2. Starting from the initial
large. With this understanding, we now convert the controlstate (i,,z,us)=(0,1,10,1,1), the master and slave systems
system(12) from the cylindrical coordinates to the Cartesian synchronize up to a scaling factor of 2.8426 without control.
coordinatesx,y,2 only in which we can practice the control. We want to manipulate the scaling factor to a higher value,

The control scheme is as follows. We only apply controlsay a* =20. This target can be reached as long as we: set
to the master system, through the coupling variabléo  >0. By turning on the control{=0.1), the size of the at-
direct the slave system towards a desired state. During contractor of the slave systefdotted ling rapidly expands to 20
trol, the phase synchronization persists all the time, but théimes as large as that of the master system. After the scaling

Similarly, we derive the function fog, ,
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FIG. 2. The size of the chaotic attractor of the slave system FIG. 3. The state vectors of the masteolid) and slave(dot)
(dotted ling is drame;tfally ampliled to 20 times as large as that of 5 stem move in the opposite directions proportionally symmetrical
the master systerfw* =20 ands =0.1). to the origin;(a) without control,a=—1.5; (b) the variation ofa

factor is directed to the target, the control signal vanishes/ith control (a* =—4 ande = —0..

The size of the master attractor almost remains the Sam@ay temporally vanishi.e., r,,=0) when the sign of the
before and after control, while the size of the slave attractogca"ng factor is changed. Wnﬁen the responseshrinks to

is dramatically amplified. The two chaotic attractors areyq origin, the scaling factor may become very large but the

similar in the structure but different in the si@@ee the ins¢t  ~ntrol is still valid.

The state vectors of the two systems always remain in the |, summary, we proposed a control method of manipula-

same direction in synchronization. o tion of the scaling factor to cope with the problem of the
Figure 3 illustrates the case of the synchronizatiorat \nyredictable performance in projective synchronization of

=m. Without control, the two systems synchronize up 0 apatially linear chaotic systems. We have verified the effi-

scaling factor ofe=—1.5 as shown in Fig.(@). With con-  ¢jency and robustness of this approach theoretically and nu-

trol (¢=—0.2), the scaling factor is directed " =—4,  perically. This control approach allows us to arbitrarily se-

plotted in Fig. 8b). The slave systerfdot) is pushed away |ect and manipulate the outcome of synchronized dynamics

from the master systertsolid) displayed in Fig. 3. In gen- i, partially linear chaotic systems.

eral, this control approach works very well. In the case in

which we manipulate the scaling factor from positive to | acknowledge the help of Jonathan Xu and Dr. Chen

negative or vice versa, the response of the master systedhong.
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