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Control of projective synchronization in chaotic systems
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We show that the scaling factor of projective synchronization in coupled partially linear systems is unpre-
dictable. This gives rise to the difficulty in estimating the state of synchronized dynamics. We therefore
propose a control method to manipulate the scaling factor onto any desired value so that the synchronization
can be managed in a preferred way. A control law is derived based on the mechanism of projective synchro-
nization of three-dimensional systems and an application is illustrated for the Lorenz system.
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Erratic motions governed by chaotic systems tend
move in a similar rhyme in terms of the angular phase or
amplitude through a certain coupling relationship. This p
nomenon, referred to as chaos synchronization, was first
served by Pecora and Carroll@1# in 1990. This dynamical
behavior has been widely explored in a variety of syste
including physical@2–5#, chemical @6–8#, and ecological
systems@9–11#, to name just a few. Practical application
have emerged in secure communications@2,3# in which syn-
chronization is used for signal processing.

In coupled chaotic systems, the dynamical state~e.g., am-
plitude! resulting from synchronization is usually unpredic
able ~we shall discuss this later!. From an application poin
of view, it is necessary to control the system in order to of
the opportunity to select and manipulate the solution of s
chronization in a defined way. In this Brief Report, we a
interested in applying this idea to the so-called project
synchronization recently reported by Mainieri and Reha
@12#. Projective synchronization is the dynamical behavior
which the responses of two identical systems synchronize
to a constant scaling factor. This phenomenon was obse
in the coupled partially linear systems

u̇m5A~z!•um ,

ż5 f ~um ,z!, ~1!

u̇s5A~z!•us .

The state vectoru has a linear form related to its derivativ
with respect to time. The matrixA(z) is only dependent on
the variablez, which is nonlinearly related to the variables
u. The subscript ofm denotes the master system ands the
slave system. In the coupled system~1!, the master system
governs the variablez and the variablez drives the slave
system. Two systems share the variablez throughout all the
time in dynamical evolution.

An example of the partially linear chaotic system is t
Lorenz system@13#

ẋ52sx1sy,

ẏ5~m2z!x2y, ~2!

ż5xy2rz,
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where the parameters are set tos510, m560, andr5 8
3 .

The matrixA(z) is a 232 matrix @ (m2z) 21
2s s# containing the

variablez that is a chaotic component. The state of the m
ter system isum5(xm ,ym), and the state of the slave syste
is us5(xs ,ys). The third equation in Eqs.~2! is the coupling
function linking the master system with the slave system

In three-dimensional systems, such as the Lorenz sys
Mainieri and Rehacek@12# observed that the amplitudes o
two coupled systems tends to a fixed scaling factorā such
that

lim
t→`

ia•um2usi50. ~3!

This factor becomes a characteristic of projective synchro
zation in partially linear chaotic systems. To cast a viv
impression on this phenomenon, we plot a synchronized
namics of two coupled Lorenz systems in Fig. 1~a!. From
Fig. 1~b!, we can see that the angular phases of the
coupled systems asymptotically approach each other. Be
the two phases merge, the ratio of the amplitudes of the
systems keeps on changing@Fig. 1~c!#. When the two phases
become identical, the phase synchronization happens. At
time, the ratio of the amplitudes of the two systems becom
the scaling factor.

We will show that the scaling factor is unpredictable. F
a selected initial condition, one can hardly anticipate w
value of the scaling factor will be delivered in projectiv
synchronization. Consequently, the system performanc
unmanageable. To explain this, we study the evolution of
angular phase and scaling factor in the cylindrical coor
nates, from which we have

ṙ 5~xẋ1yẏ!/r ,

u̇5~xẏ2yẋ!/r 2, ~4!

ż5 ż.

Substituting Eqs.~1! into Eqs.~4!, we get

u̇5$cosu,sinu%@B#@A#H cosu
sinu J 5g~z,u!, ~5!

ṙ

r
5$cosu,sinu%@A#H cosu

sinu J , ~6!
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FIG. 1. In the projective synchronization~Lo-
renz!, ~a! the master~M! and slave~S! systems
move in the same angular phase;~b! two angular
phases evolve together;~c! the scaling factor
tends to an unknown constant.
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where A(z)5@a21 a22

a11 a12# and B5@21 0
0 1#. The components

ai , j may associate with the variablez.
Mainieri and Rehacek@12# studied the evolution of the

angular phases in projective synchronization. A differen
w5um2us indicates a distance between the master and s
systems. From Eq.~5!, the time variation of the angular dif
ference is given byẇ5g(z,um)2g(z,us), which carries a
term of sinw. When sinw tends to zero, it leads toẇ→0,
which is a necessary condition of phase synchronization.
sufficient condition~stability condition! of the phase syn-
chronization is given by the criterion
*0

t @]g(z,u)/]u#u5um
dt,0, which is derived from a linea

approximation ofẇ when sinw'0 @12#. The necessary con
dition, i.e., sinw50, implies that projective synchronizatio
happens in two possible ways, i.e.,w50 andw5p, which
are the two equilibrium points ofẇ. As with w50, the state
vectors of the master state and the slave state are syn
nized in the same direction all the time, as displayed in F
1. As with w5p, the state vectors of two synchronized sy
tems evolve in opposite directions, proportionally symme
cal to the origin.

To understand how the scaling factor finally forms, w
look into what happens to the ratio ofa5r s /r m when phase
synchronization occurs. The time variation of this ratio is

ȧ5aS ṙ s

r s
2

ṙ m

r m
D . ~7!

Substituting Eq.~6! into Eq. ~7!, we have

ȧ5ah~z,um ,us!, ~8!

where

h~z,um ,us!5@~a112a22!sin~um1us!

2~a121a21!cos~um1us!#sin~um2us!.

~9!
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Integrating Eq.~8!, we express the scaling factor as

a~ t !5a~0!expS E
0

t

h~z,um ,us!dt D , ~10!

wherea~0! is an initial scaling factor determined by the in
tial state. The functionh(z,um ,us) in Eq. ~9! also carries a
term of sinw. It tends to zero as sinw→0. Thus the time
integration in Eq. ~10! reaches a limited value
limt→` *0

t h(z,um ,us)dt5C when phase synchronizatio
occurs. The value of the integration varies ast,tC and re-
mains unchanged aftert>tC , wheretC is a critical time at
which the phase synchronization happens. From Eq.~10!, the
final scaling factor isa(`)5ā5a(0)3eC. Given an initial
state@i.e., givena~0! that depends on the initial state ofz,
um , andus#, the limit C becomes the only part to determin
the scaling factor. Unfortunately,C is unpredictable becaus
the variables inh(z,um ,us) behave chaotically. In literature
@12#, the authors remarked that a scaling factor depends
the initial conditions and a vector field, but it is difficult t
obtain an analytical solution for the vector field. It implie
that the prediction of a scaling factor is invalid, although t
vector field seems a smoothly nonlinear function of the i
tial state~Fig. 5 in @12#!. Our result@a(`)5a(0)3eC# de-
livers a similar conclusion that the scaling factor is det
mined by the initial conditions@i.e., a~0!# and a nonlinear
function @i.e., eC, where C5 limt→` *0

t h(z,um ,us)dt#, but
the nonlinear function is hardly predicted because of the c
otic variables. To this end, we believe that any effort to
timate a resulting scaling factor in the initial stage works
no avail.

In this paper, we show that the scaling factor of project
synchronization can be arbitrarily maneuvered, as is
quired, by introducing a feedback control to the master s
tem. A desired scaling factor for synchronization is ess
tially important since we can manipulate a synchroniz
dynamics to any scale by steering the master system. In w
follows, we intend to develop a control method to make t
1-2
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projective synchronization manageable. Examining Eq.~10!,
we have realized that it delivers a useful message: an
crease of the value of the integrand will lead to an expon
tial amplification of the scaling factor and vice versa. Th
message tells us that we can employ a controld(t) to influ-
ence the result of synchronization. Thus we introduce a c
trol to Eq. ~8! and the system becomes

ȧ5a@h~z,um ,us!1d~ t !#. ~11!

However, it is still troublesome to operate the control fun
tion d(t). First, the control contains only a small percenta
of total energy of the system with the result that it may
deficient in strength and ability againsth(z,um ,us) that var-
ies chaotically. Second, operation of control in the timet
,tC may spoil the natural evolution process of phase s
chronization.

To overcome the problems, the strategy we have use
to take advantage of the fact thath(z,um ,us) becomes zero
after t>tC . In this time frame, we can exercise control wit
out any problems. By so doing, we can see that the evolu
of scaling factor~11! is solely controlled byd(t) as

ȧ5ad~ t !, t>tC , ~12!

and att5tC , a(tC)5ā is the initial state of Eq.~12!. The
control function has a feedback form

d~ t !50, t,tC ,
~13!

d~ t !5«~a* 2a!, t>tC ,

wherea* is a desired scaling factor and the parameter« is a
feedback gain. From Eqs.~12! and~13!, the controlled scal-
ing factor is computed by

a~ t !5a* F11S a*

ā
21D exp~2«a* t !G21

. ~14!

The control mechanism can be easily understood. F
Eq. ~13!, the control function generates a negative signa
decrease the scaling factor~12! as a.a* , and a positive
signal to increase the scaling factor asa,a* . The magni-
tude of the control signal decreases when the scaling fa
approaches the target. The control~12! always leads to
limt→` a(t)5a* at an exponential rate, if«a* .0 as indi-
cated in Eq.~14!. Thus the control is robust and efficient.
is important to note that we must set«.0 when a* .0
~synchronization atw50!, and«,0 whena* ,0 ~synchro-
nization atw5p!. Also note that there exists singularity i
Eq. ~14! if the target value is set to zero, at which either t
master system vanishes or the slave system tends to infin
large. With this understanding, we now convert the con
system~12! from the cylindrical coordinates to the Cartesi
coordinates~x,y,z! only in which we can practice the contro

The control scheme is as follows. We only apply cont
to the master system, through the coupling variablez, to
direct the slave system towards a desired state. During
trol, the phase synchronization persists all the time, but
02720
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scaling factor varies until it hits the target. We introduce t
control functions jx and jy to the master system. Th
coupled systems now become

ẋm5a11xm1a12ym1jx ,

ẏm5a21xm1a22ym1jy ,

ż5 f ~xm ,ym ,z!, ~15!

ẋs5a11xs1a12ys ,

ẏs5a21xs1a22ys ,

whereai , j may contain the variablez. Our next attempt is to
derive the control functionsjx and jy from Eqs. ~12! and
~13!, which have been verified as being efficient and robu

With the notation ofx5r cosu, y5r sinu, and um5us
during phase synchronization, Eq.~12! can be written into
two differential equations,

d

dt S xs

xm
D5

xs

xm
«S a* 2

xs

xm
D ,

~16!
d

dt S ys

ym
D5

ys

ym
«S a* 2

ys

ym
D .

We investigate the first equation in Eqs.~16! to derive the
control functionjx . The derivation forjy will be similar.
The differentiation of the ratio ofxs /xm with respect to time
also yields

d

dt S xs

xm
D5

xs

xm
S ẋs

xs
2

ẋm

xm
D . ~17!

From the first equation of Eqs.~16! and ~17!, we obtain

ẋs

xs
2

ẋm

xm
5«S a* 2

xs

xm
D . ~18!

Substituting the first equation and fourth equation of E
~15! into Eq.~18!, and noting that the relationxmys5xsym is
held when phase synchronization persists, we then derive
control function forjx ,

jx5«~xs2a* xm!. ~19!

Similarly, we derive the function forjy ,

jy5«~ys2a* ym!. ~20!

The control should be turned on whent>tC .
We now apply this control method to the Lorenz syste

~2! coupled in the form of~15!. We illustrate the case of the
synchronization atw50 in Fig. 2. Starting from the initial
state (um ,z,us)5(0,1,10,1,1), the master and slave syste
synchronize up to a scaling factor of 2.8426 without contr
We want to manipulate the scaling factor to a higher val
saya* 520. This target can be reached as long as we s«
.0. By turning on the control («50.1), the size of the at-
tractor of the slave system~dotted line! rapidly expands to 20
times as large as that of the master system. After the sca
1-3
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BRIEF REPORTS PHYSICAL REVIEW E 63 027201
factor is directed to the target, the control signal vanish
The size of the master attractor almost remains the s
before and after control, while the size of the slave attrac
is dramatically amplified. The two chaotic attractors a
similar in the structure but different in the size~see the inset!.
The state vectors of the two systems always remain in
same direction in synchronization.

Figure 3 illustrates the case of the synchronization aw
5p. Without control, the two systems synchronize up to
scaling factor ofā521.5 as shown in Fig. 3~a!. With con-
trol («520.2), the scaling factor is directed toa* 524,
plotted in Fig. 3~b!. The slave system~dot! is pushed away
from the master system~solid! displayed in Fig. 3. In gen-
eral, this control approach works very well. In the case
which we manipulate the scaling factor from positive
negative or vice versa, the response of the master sys

FIG. 2. The size of the chaotic attractor of the slave syst
~dotted line! is dramatically amplified to 20 times as large as that
the master system~a* 520 and«50.1!.
v
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may temporally vanish~i.e., r m50! when the sign of the
scaling factor is changed. When the responser m shrinks to
the origin, the scaling factor may become very large but
control is still valid.

In summary, we proposed a control method of manipu
tion of the scaling factor to cope with the problem of th
unpredictable performance in projective synchronization
partially linear chaotic systems. We have verified the e
ciency and robustness of this approach theoretically and
merically. This control approach allows us to arbitrarily s
lect and manipulate the outcome of synchronized dynam
in partially linear chaotic systems.

I acknowledge the help of Jonathan Xu and Dr. Ch
Zhong.

f
FIG. 3. The state vectors of the master~solid! and slave~dot!

system move in the opposite directions proportionally symmetr
to the origin;~a! without control,ā521.5; ~b! the variation ofa
with control ~a* 524 and«520.2!.
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